Richard Baker

Personal

First Name: Richard
Last Name: Baker

Summary

University of Iowa-Iowa City.

Biography

Department of Mathematical Sciences, University of Nevada; Las Vegas, NV 89154

Research

Richard Baker interests are in operator algebras, specializing in non-selfadjoint operator algebras. He is also interested in quantum field theory and distributive artificial intelligence:

Baker, Richard LLebesgue measure on $\Bbb R\sp \infty$. IIProc. Amer. Math. Soc. 132 (2004), no. 9, 2577--2591

Baker, R. LThe qualitative analysis of a dynamical system of differential equations arising from the study of multilayer scales on pure metals. IIProc. Amer. Math. Soc. 127 (1999), no. 3, 753--761.

Baker, Richard LOn certain Banach limits of triangular matrix algebrasHouston J. Math. 23 (1997), no. 1, 127--141.

Baker, R. LThe qualitative analysis of a dynamical system modeling the formation of two-layer scales on pure metalsProc. Amer. Math. Soc. 123 (1995), no. 5, 1373--1378.

Baker, R. LTriangular UHF algebras over arbitrary fieldsProc. Amer. Math. Soc. 123 (1995), no. 1, 67--79.

Akuezue, H. C.; Baker, R. L.; Hirsch, M. W. The qualitative analysis of a dynamical system modeling the formation of multilayer scales on pure metalsSIAM J. Math. Anal. 25 (1994), no. 4, 1167--1175.

Baker, Richard $K\sb 0$ of certain subdiagonal subalgebras of von Neumann algebrasProc. Amer. Math. Soc. 116 (1992), no. 1, 13--19. 46L80 (19A49)

Baker, Richard Lebesgue measure on $R\sp \infty$Proc. Amer. Math. Soc. 113 (1991), no. 4, 1023--1029.

Baker, Richard A certain class of triangular algebras in type ${\rm II}\sb 1$ hyperfinite factorsProc. Amer. Math. Soc.112 (1991), no. 1, 163--169.

Baker, Richard LTriangular UHF algebrasJ. Funct. Anal. 91 (1990), no. 1, 182--212.