RESEARCH

Dr. Adegoke Olubummo's interest was Functional Analysis, primarily in Banach algebras, ordered vector spaces, semigroups of linear operators, and abstract harmonic analysis. Mathematics Reviews lists **24** papers published by Professor Olubummo:

(with Assiamoua, V. S. K.), *Fourier-Stieltjes transforms of vector-valued measures on compact groups *, Acta Sci. Math. (Szeged) **53** (1989), no. 3-4, 301--307.

*A note on irregular measures *, J. Nigerian Math. Soc. **5** (1986), 11--16 (1989).

*An approximation theorem for semigroups of operators *, Portugal. Math. **40**(1981), no. 4, 383--391 (1985).

*$(0,\,A)$-semigroups on $L\sb{p}(G)$ commuting with translations are $(C\sb{0})$ *, Acta Sci. Math. (Szeged) **46** (1983), no. 1-4, 323--328.

*Unbounded multiplier operators *, J. Math. Anal. Appl. **71** (1979), no. 2, 359--365.

*Semigroups of multipliers associated with semigroups of operators *, Proc. Amer. Math. Soc. **49** (1975), no. 1, 161--168.

(with Rajagopalan, M.) *Anti-self dual groups *, Comment. Math. Prace Mat. **19**(1976), no. 1, 111--112.

(with Babalola, V. A.) *Semigroups of operators commuting with translations *, Colloq. Math. **31** (1974), 253--258.

*A decomposition theorem for finitely additive measures on a discrete commutative semigroup *, Nigerian J. Sci. **4** (1970), 101--110.

*Finitely additive measures on the non-negative integers *, Math. Scand. **24**(1969) 186--194 (1970).

*Dissipative ordinary differential operators of even order ,* Trans. Amer. Math. Soc. **129** 1967 130--139.

(with Phillips, R. S.) *Dissipative ordinary differential operators *, J. Math. Mech. **14** (1965) 929--949.

*A note on perturbation theory for semi-groups of operators *, Proc. Amer. Math. Soc. **15** (1964) 818--822.

*Complemented Banach algebras,* Canad. J. Math. **16** (1964) 149--150.

*Weakly compact $B\sp{\#}$-algebras,* Proc. Amer. Math. Soc. **14** (1963) 905--908.

*Monotone semi-groups of bounded operators,* J. Math. Mech. **12** (1963) 385--390.

*Operators of finite rank in a reflexive Banach space,* Pacific J. Math. **12** (1962) 1023--1027.

*On the existence of an absolutely minimal norm in a Banach algebra,* Proc. Amer. Math. Soc. **11** (1960) 718--722.

*$B\sp{\sharp }$-algebras with a certain set of left completely continuous elements,* J. London Math. Soc. **34** (1959) 367--369.

*The Laplace-Stieltjes transform of an increasing vector-valued function,* Quart. J. Math. Oxford Ser. (2) **8** (1957), 97--107.

*Left completely continuous $B\sharp$-algebras,* J. London Math. Soc. **32**(1957), 270--276.

thanks to Glo Aniebo for help with this project