Dr. Dominic P. Clemence

Personal

Prefix: Dr.
First Name: Dominic
Middle Name: P.
Last Name: Clemence

Education

Summary

After obtaining his Ph.D., Dr. Clemence spent six years at University of Zimbabwe in Harare.

Biography

Birthplace: Johannesburg (Soweto) South Africa, but grew up in Zimbabwe and Botswana

Employment:  Professor North Carolina Agricultural & Technical University

Research

  1. Acho, Thomas M.; Clemence, Dominic P. The parameter dependent Sturm-Liouville eigenproblem with an interior simple or double poleANZIAM J. 43 (2002), no. 4, 479--491.
  2. Clemence, Dominic P. Subordinacy analysis and absolutely continuous spectra for Sturm-Liouville equations with two singular endpoints. Canad. Math. Bull. 41 (1998), no. 1, 23--27.
  3. Clemence, Dominic P. On the singular behaviour of the Titchmarsh-Weyl $m$-function for the perturbed Hill's equation on the line. Canad. Math. Bull. 40 (1997), no. 4, 416--421.
  4. Acho, Thomas M.; Clemence, Dominic P. Sturm-Liouville eigenproblems with an interior double pole. Z. Angew. Math. Phys. 46 (1995), no. 3, 459--474.
  5. Clemence, Dominic P. Titchmarsh-Weyl theory and Levinson's theorem for Dirac operators. J. Phys. A 27 (1994), no. 23, 7835--7842.
  6. Clemence, Dominic P.; Klaus, Martin Continuity of the $S$ matrix for the perturbed Hill's equation. J. Math. Phys. 35 (1994), no. 7, 3285--3300.
  7. Clemence, Dominic P. $M$-function behaviour for a periodic Dirac system. Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), no. 1, 149--159.
  8. Clemence, Dominic P. Some layer-stripping formulae for the Schrödinger equation with a periodic potential. Inverse Problems 8 (1992), no. 5, 751--755.
  9. Clemence, Dominic P. Low-energy scattering and Levinson's theorem for a one-dimensional Dirac equation. Inverse Problems 5 (1989), no. 3, 269--286.
  10. Clemence, Dominic P. On the Titchmarsh-Weyl $M(\lambda)$-coefficient and spectral density for a Dirac system. Proc. Roy. Soc. Edinburgh Sect. A 114 (1990), no. 3-4, 259--277.
  11. Clemence, Dominic P. Levinson's theorem for a Dirac system. Inverse Problems 6 (1990), no. 2, 175--184.