Edward J. Farrell

Personal

First Name: Edward
Middle Name: J.
Last Name: Farrell

Summary

Professor Emeritus at The University of The West Indies, St. Augustine, Trinidad - Trinidad and Tobago

Biography

Edward Farell is a Professor Emeritus from The University of The West Indies (St. Augustine, Trinidad & Tobago Campus) in The Department of Mathematics and Statistics.  He specializes in discrete mathematics as well as graph theory, graph polynomials and combinatorial algorithms.  

                                                                         RESEARCH

 . Beezer, Robert A.; Farrell, E. J. The matching polynomial of a distance-regular graph. Int. J. Math. Math. Sci. 23 (2000), no. 2, 89--97.

. Farrell, E. J. Matchings in pentagonal cacti. J. Math. Sci. (Calcutta) 11 (2000), no. 2, 109--126.

. Farrell, E. J.; de Matas, C. M. Star polynomials of some families of graphs with small cyclomatic numbers. Util. Math. 58 (2000), 87--96.

. Farrell, E. J. Matchings in triangular cacti. J. Math. Sci. (Calcutta) 11 (2000), no. 1, 85--98.

. Farrell, E. J. Decomposition of complete graphs and complete bipartite graphs into complete bipartite factors. J. Math. Sci. (Calcutta) 11 (2000), no. 1, 29--33.

. Farrell, Edward J.; Rosenfeld, Vladimir R. Block and articulation node polynomials of the generalized rooted product of graphs. J. Math. Sci. (Calcutta) 11 (2000), no. 1, 35--47.

. Farrell, E. J.; Wahid, S. A. $D$-graphs. IV. Constructions of $D$-graphs for linear cacti. Bull. Inst. Combin. Appl. 30 (2000), 25--42.

. Farrell, E. J. On the derivative of the chromatic polynomial. Bull. Inst. Combin. Appl. 29 (2000), 33--38.

. Farrell, Edward J.; Kennedy, John W.; Quintas, Louis V. Permanents and determinants of graphs: a cycle polynomial approach. J. Combin. Math. Combin. Comput. 32 (2000), 129--137.

. Farrell, E. J.; de Matas, C. M. Algorithms for star polynomials of graphs. J. Math. Sci. (Calcutta) 10 (1999), no. 2, 69--76.

. Farrell, Edward J.; Kennedy, John W.; Quintas, Louis V. Permanents of matrices: a graph cycle polynomial approach. Bull. Inst. Combin. Appl. 28 (2000), 99--106.

. Farrell, E. J.; Wahid, S. A. $D$-graphs. II. Constructions of $D$-graphs for some families of graphs with even cycles. Util. Math. 56 (1999), 167--176.

. Farrell, Edward J.; Kennedy, John W.; Quintas, Louis V. Permanents, determinants, and cycle polynomials. New York Graph Theory Day, 36 (Staten Island, NY, 1998). Graph Theory Notes N. Y. 36 (1999), 30--34.

. Farrell, Edward J. An introduction to clique polynomials. New York Graph Theory Day, 35 (1998). Graph Theory Notes N. Y. 35 (1998), 13--15.

. Farrell, E. J. Matchings in rectangular cacti. J. Math. Sci. (Calcutta) 9 (1998), no. 2, 163--183.

. Farrell, E. J. A note on the clique polynomial and its relation to other graph polynomials. J. Math. Sci. (Calcutta) 8 (1997), no. 2, 97--102.

. Farrell, Edward J. On circuit polynomials and determinants of matrices. Dedicated to the memory of Paul Erdös (Riverdale, NY, 1996). Graph Theory Notes N. Y. 32 (1997), 47--52.

. Farrell, E. J.; Ramsamooj, N. On the derivatives of a certain characteristic polynomial. J. Math. Sci. (Calcutta) 9 (1998), no. 1, 93--99.

. Farrell, Edward J. The impact of $F$-polynomials in graph theory. Quo vadis, graph theory?, 173--178, Ann. Discrete Math., 55, North-Holland, Amsterdam, 1993.

. Beezer, Robert A.; Farrell, E. J. Counting subgraphs of a regular graph. J. Math. Sci. (Calcutta) 9 (1998), no. 1, 47--55.

. Farrell, E. J. Chromatic roots---some observations and conjectures. Discrete Math. 29 (1980), no. 2, 161--167.

8. Farrell, E. J. On chromatic coefficients. Discrete Math. 29 (1980), no. 3, 257--264. [103] 81c:05073 Farrell, E. J. Matchings in wheels. Ars Combin. 8 (1979), 109--115.

7. Farrell, E. J. An introduction to matching polynomials. J. Combin. Theory Ser. B 27 (1979), no. 1, 75--86.

6. Farrell, E. J. On a general class of graph polynomials. J. Combin. Theory Ser. B 26 (1979), no. 1, 111--122.

5. Farrell, E. J. On a class of polynomials associated with the stars of a graph and its application to node-disjoint decompositions of complete graphs and complete bipartite graph. Canad. Math. Bull. 22 (1979), no. 1, 35--46.

4. Farrell, E. J. On a class of polynomials obtained from the circuits in a graph and its application to characteristic polynomials of graphs. Discrete Math. 25 (1979), no. 2, 121--133.

3. Farrell, E. J. Matchings in ladders. Ars Combin. 6 (1978), 153--161.

2. Farrell, E. J. On graphical partitions and planarity. Discrete Math. 18 (1977), no. 2, 149--153.

1. Farrell, Edward J. Uniqueness of the electromagnetic field in the Rainich unified field theory. Tensor (N.S.) 12 1962 263--277.